WWPD: Control

What would Python display?
Assume the following code has been executed.

```
def mystery(a, b, c, d):
    if a<0:
        return None
    while b < c:
        c = c - 1
        d = d + 3
    return c > d
print(mystery(1, 2, 3, 4)) # (a)
print(mystery(1, 2, 3, -4)) # (b) & (c)
print(mystery(1, -2, -3, 4)) # (d)
print(mystery(-1, -2, 3, -1)) # (e)
```

1. (1.5 pt$)$ What value is printed at (a)?
A. True
B. False
C. None
2. (1.5 pt$)$ What value is printed at (b)?
A. True
B. False
C. None
3. (1.5 pt) What value is bound to ${ }^{\circ} c^{`}$ in the local frame at the end of the second function call to mystery at (c)?
A. 0
B. 1
C. $\underline{2}$
D. 3
E. -4
4. (1.5 pt$)$ What value is printed at (d)?
A. True
B. False
C. None
5. (1.0 pt) What value is printed at (e)?
A. True
B. False
C. None

Function Equivalence: Exponentiation

Definition. Two functions f and g have identical behavior if $f(x)$ and $g(x)$ return equal values or return functions with identical behavior, for every x that does not cause an error.

```
from operator import mul
def double(x):
    return x * 2
def triple(x):
    return x * 3
def enigma(y):
    # Hint: look at the parentheses very carefully
    return double(triple(y)) * triple(triple(y))
def multiply_by(a):
    def slow multiplication(b):
        sum = 0
        x = 0
        while (x < a):
            sum = b + sum
            x = x + 1
        return total
    return slow_multiplication
```

NOTE: the function mul (x, y) computes $\mathrm{x} * \mathrm{y}$.
6. (2.0 pt) The result of evaluating `multiply_by (2) (5) ` has identical behavior to the result of evaluating the expression ... (check all that apply)
A. enigma (6)
B. enigma (2)
C. enigma (5)
D. double (5)
E. double (2)
F. triple
G. triple(5)
H. mul (5, 2)
I. mul $(2,5)$
J. mul $(3,4)$
K. mul
7. (2.0 pt) The result of evaluating `multiply_by (3) (5) ` has identical behavior to the result of evaluating the expression ... (check all that apply)
A. enigma (1)
B. enigma(2)
C. enigma (3)
D. engima
E. triple (5)
F. triple(3)
G. triple
H. mul $(3,5)$
I. mul $(15,1)$
J. mul $(2,10)$
K. mul
8. (2.0 pt) The result of evaluating `multiply_by (2) ` has identical behavior to the result of evaluating the expression ... (check all that apply)
A. enigma (10)
B. enigma
C. double (2)
D. double (5)
E. double
F. mul (2, 5)
G. mul (1, 10)
H. mul
9. (2.0 pt) What is the type of the return value for the function `multiply_by`?
A. Function
B. Integer
C. Float
D. String
E. None
10. (2.0 pt) What is/are the type of the return value(s) for the function `enigma`? (check all that apply)
A. Function
B. Integer
C. Float
D. String
E. None

(8.0 points) Chem 105

Consider the environment diagram (and print output) below, followed by the code that generated it.

```
Print output (drag lower right corner to resize)
10.0 atoms hydrogen.
5.0 atoms oxygen.
Produces 5.0 molecules of water
```

Frames Objects


```
def multiplier_maker(n):
```

 return lambda element : (a)* \(n\)
 def make_water (multiplier) :
nhydrogen, noxygen $=2.0,1.0$
nmolecules =
(d)
print(str(multiplier(nhydrogen)) + ' atoms hydrogen.')
print(str(multiplier(noxygen)) + ' atoms oxygen.')
print('Produces ' + str(multiplier ((b)) + ' molecules of water.')
make_water(
\qquad (c) (5.0))
11. (2.0 pt) Which one of these could fill in blank (a)?
A. n
B. element
C. multiplier
D. make_water
E. 3.0
F. 5.0
12. (2.0 pt) Which one of these could fill in blank (b) to get the environment diagram shown?
A. nmolecules
B. nhydrogen
C. noxygen
D. lambda x : x
E. 10.0
F. 1.0
13. (2.0 pt) Which one of these could fill in blank (c)?
A. element
B. make_water
C. nmolecules
D. lambda x : multiplier_maker(x)
E. multiplier
F. lambda element : element * n
G. multiplier maker
14. (2.0 pt) Which one of these could fill in blank (d)?
A. 3.0
B. 6.0
C. 9.0
D. 1.0
E. $9.0,3.0$
F. 5.0
G. multiplier

(8 points) Classes/Objects - Fill-in-the-blank and WWPD

Consider the following class definitions:

```
class Bookshelf:
    def __init__(self, capacity, books=[]):
        self.capacity = capacity
        self.books = []
        for book in books:
            self.addBook(book)
    def addBook(self, book):
        if len(self.books) == self.capacity:
            print(f'Bookshelf is full. Could not add \'{book.title}\'.')
            return
        if (a) : # verify that 'book' is the right type
            self.books.append(book)
    def __add__(self, other):
        if isinstance(other, Bookshelf):
            return [self, other]
        elif isinstance(other, Book):
            shelf2 = Bookshelf(self.capacity, list(self.books))
            shelf2.addBook(other)
            return shelf2
    def __str__(self): # this gets called by print() and str()
        book_string = ', '.join([str(a) for a in self.books])
        space = self.capacity - len(self.books)
        return f'Books: {book_string}; This shelf can fit {space} more books'
    def __repr__(self): # this gets called by repr() or when the object is
displayed within an iterable/collection
        book_string = ', '.join([repr(a) for a in self.books])
        return f'Bookshelf({self.capacity},[{book_string}])'
class Book:
    def
        (b)
        self.title, self.author = title, author
    def
```

\qquad

``` :
            return f'Book(\'{self.title}\',\'{self.author}\')'
    def
```

\qquad

```
            return self.title + ', written by ' + self.author
```

Indicate what should appear in blanks (a) - (d) above:
15. (1 pt) Which of the following should appear in blank (a)
A. is Book('Frankenstein','Mary Shelley')
B. == Book('Frankenstein','Mary Shelley')
C. isinstance (book, Bookshelf)
D. isinstance (book, Book)
E. == new Book()
16.(2 pts) Which of the following should appear in blank (b)
A. _init (self, title, author)
B. ___add__(self, other)
C. __repr__(self)
D. __act__(self)
E.__str__(self)
17.(1 pt) Which of the following should appear in blank (c)
A. __init__(self, author, title)
B. __add__(self, other)
C. repr (self)
D. __act__(self)
E. __str__(self)
18.(1 pt) Which of the following should appear in blank (d)
A. __init__(self, author, title)
B. ___add__(self, other)
C. __repr__(self)
D. ___act__(self)
E. _str_(self)

Given the code below, what would Python display for each of the following?

```
fiction_shelf = Bookshelf(10)
nonfiction_shelf = Bookshelf(1)
frankenstein = Book('Frankenstein','Mary Shelley')
coraline = Book('Coraline','Neil Gaiman')
print(frankenstein) (e)
adams = Book('John Adams','David McCullough')
hamilton = Book('Alexander Hamilton','Ron Chernow')
nonfiction_shelf.addBook(adams)
nonfiction_shelf += hamilton (f)
fiction_shelf.addBook(frankenstein)
fiction_shelf += coraline
str(fiction_shelf) (g)
```

19.(1 pt) Which of the following would be displayed by executing (e)
A. Coraline
B. Frankenstein
C. Book('Frankenstein','Mary Shelley')
D. 'Frankenstein'
E. 'Frankenstein, written by Mary Shelley'
20.(1 pt) Which of the following would be displayed by executing (f)
A. Nothing
B. Bookshelf is full. Could not add 'Alexander Hamilton'.
C. [Book('John Adams','David McCullough'), Book('Alexander Hamilton', 'Ron
D. Chernow')]
E. Alexander Hamilton, written by Ron Chernow
F. [Bookshelf(1,'John Adams, Alexander Hamilton')]
21.(1 pt) Which of the following would be displayed by executing (g)
A. 'This shelf can fit 0 more books; Books: John Adams, written by David McCullough'
B. 'Books: John Adams, written by David McCullough; This shelf can fit 0 more books'
C. 'Coraline, written by Neil Gaiman; This shelf can fit 8 more books, Books: Frankenstein, written by Mary Shelley'
D. 'Books: Frankenstein, written by Mary Shellev, Coraline, written by Neil Gaiman; This shelf can fit 8 more books'
E. 'Books: Frankenstein, written by Mary Shelley, Coraline, written by Neil Gaiman; This shelf can fit 8 more books | Books: John Adams, written by David McCullough; This shelf can fit 0 more books'

Consider the following program which is invoked by passing in three command-line arguments: 1) an input filename, 2) an output filename, and 3) and integer for the number of output sets to produce.

```
rand_num_game.py:
import sys
from random import randint
def randNumUpTo(n):
    return lambda : randint(1,n)
if __name___ == '__main___':
    iFile = open(sys.argv[1])
    oFile = __________________
    threshold =
```

\qquad

``` (b)
    lines = iFile.readlines()
    names = [player.strip() for player in lines] (c)
    oneToHundred = randNumUpTo(100) (d)
    for i in range(threshold): (e)
        oFile.write("Round " + str(i + 1) + "\n" )
        for name in names:
            multiplier = randNumUpTo(5)()
            randScore = oneToHundred() * multiplier (f)
            oFile.write(f"{name}: {randScore}\n") (g)
        oFile.write("\n")
    iFile.close()
    oFile.close()
```

Assume the program is invoked with the following command:

```
python rand_num_game.py players.txt scores.txt 4
```

And players.txt contains the following lines:
Dylan
Bob
Jim
Quentin
Ralph
22.(1 pt) Which of the following would be the correct syntax to open the output file (scores.txt) for writing at line (a)?
A. open (argv[2])
B. open (argv[2],' w^{\prime})
C. open (svs.argv[2],'w')
D. open(sys.argv[2])
23. (1 pt) Which of the following would be the correct syntax to convert the last command-line argument to an integer on line (b)?

```
A. argv[3]
B. sys.argv[3]
C. int(argv[3])
D. int(sys.argv[3])
E. float(argv[3])
F. float(sys.argv[3])
```

24.(1 pt) What is the content of the list generated by the list comprehension on line (c)?
A. [Dylan\n, Bob\n, Jim\n, Quentin\n, Ralph\n]
B. ''Dylan', 'Bob', 'Jim', 'Ouentin', 'Ralph'l
C. ['Dylan\n', 'Bob\n', 'Jim\n', 'Quentin\n', 'Ralph\n']
D. 'Dylan', 'Bob', 'Jim', 'Quentin', 'Ralph'
25. (1 pt) What is the type of the object bound to the name d 6 on line (d)?
A. List
B. Function
C. String
D. Integer
E. Float
26. (1 pt) What is the range of values that i can have on line (e)?
A. 1, 2
B. 1, 2, 3
C. 0, 1, 2
D. $0,1,2,3$
E. $0,1,2,3,4$
27.(1 pt) What are the minimum and maximum values val can have on line (f)?
A. $\min =0, \max =100$
B. $\min =1, \max =250$
C. $\underline{\min }=1, \max =500$
D. $\min =1, \max =100$
E. $\min =3, \max =500$
28. (1 pt) If randScore is bound to the number 43, what will be the string written the fifth time line (g) is executed?
A. "Ralph: 43"
B. "Bob:43"
C. "Jim: $34 \backslash n$ "
D. "Ralph: 43\n"
E. "Quentin:43\n"

