
CS 61A Recursion
Fall 2021 Discussion 3: September 15, 2021

Recursion
A recursive function is a function that is defined in terms of itself.

Consider this recursive factorial function:

def factorial(n):
"""Return the factorial of N, a positive integer."""
if n == 1:

return 1
else:

return n * factorial(n - 1)

Inside of the body of factorial, we are able to call factorial itself, since the
function body is not evaluated until the function is called.

When n is 1, we can directly return the factorial of 1, which is 1. This is known as
the base case of this recursive function, which is the case where we can return from
the function call directly, without having to first recurse (i.e. call factorial) and
then returning. The base case is what prevents factorial from recursing infinitely.

Since we know that our base case factorial(1) will return, we can compute
factorial(2) in terms of factorial(1), then factorial(3) in terms of
factorial(2), and so on.

There are three main steps in a recursive definition:

1. Base case. You can think of the base case as the case of the simplest function
input, or as the stopping condition for the recursion.

In our example, factorial(1) is our base case for the factorial function.

2. Recursive call on a smaller problem. You can think of this step as calling
the function on a smaller problem that our current problem depends on. We
assume that a recursive call on this smaller problem will give us the expected
result; we call this idea the “recursive leap of faith”.

In our example, factorial(n) depends on the smaller problem of factorial
(n-1).

3. Solve the larger problem. In step 2, we found the result of a smaller
problem. We want to now use that result to figure out what the result of our
current problem should be, which is what we want to return from our current
function call.

In our example, we can compute factorial(n) by multiplying the result of
our smaller problem factorial(n-1) (which represents (n-1)!) by n (the
reasoning being that n! = n * (n-1)!).

2 Recursion

Q1: Warm Up: Recursive Multiplication

These exercises are meant to help refresh your memory of the topics covered in
lecture.

Write a function that takes two numbers m and n and returns their product. Assume
m and n are positive integers. Use recursion, not mul or *.

Hint: 5 * 3 = 5 + (5 * 2) = 5 + 5 + (5 * 1).

For the base case, what is the simplest possible input for multiply?

For the recursive case, what does calling multiply(m - 1, n) do? What does
calling multiply(m, n - 1) do? Do we prefer one over the other?

def multiply(m, n):
""" Takes two positive integers and returns their product using
recursion.
>>> multiply(5, 3)
15
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 3

Q2: Recursion Environment Diagram

Draw an environment diagram for the following code:

def rec(x, y):
if y > 0:

return x * rec(x, y - 1)
return 1

rec(3, 2)

Imagine you were writing the documentation for this function. Come up with a line
that describes what the function does:

Note: This problem is meant to help you understand what really goes on
when we make the “recursive leap of faith”. However, when approaching
or debugging recursive functions, you should avoid visualizing them in
this way for large or complicated inputs, since the large number of frames
can be quite unwieldy and confusing. Instead, think in terms of the three
steps: base case, recursive call, and solving the full problem.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Recursion

Q3: Find the Bug

Find the bug with this recursive function.

def skip_mul(n):
"""Return the product of n * (n - 2) * (n - 4) * ...

>>> skip_mul(5) # 5 * 3 * 1
15
>>> skip_mul(8) # 8 * 6 * 4 * 2
384
"""
if n == 2:

return 2
else:

return n * skip_mul(n - 2)

Q4: Is Prime

Write a function is_prime that takes a single argument n and returns True if n
is a prime number and False otherwise. Assume n > 1. We implemented this in
Discussion 1 iteratively, now time to do it recursively!

Hint: You will need a helper function! Remember helper functions
are useful if you need to keep track of more variables than the given
parameters, or if you need to change the value of the input.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 5

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.

>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Recursion

Q5: Recursive Hailstone

Recall the hailstone function from Homework 1. First, pick a positive integer n
as the start. If n is even, divide it by 2. If n is odd, multiply it by 3 and add 1.
Repeat this process until n is 1. Write a recursive version of hailstone that prints
out the values of the sequence and returns the number of steps.

Hint: When taking the recursive leap of faith, consider both the return
value and side effect of this function.

def hailstone(n):
"""Print out the hailstone sequence starting at n, and return
the number of elements in the sequence.
>>> a = hailstone(10)
10
5
16
8
4
2
1
>>> a
7
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 7

Q6: Merge Numbers

Write a procedure merge(n1, n2) which takes numbers with digits in decreasing
order and returns a single number with all of the digits of the two, in decreasing
order. Any number merged with 0 will be that number (treat 0 as having no digits).
Use recursion.

Hint: If you can figure out which number has the smallest digit out of
both, then we know that the resulting number will have that smallest
digit, followed by the merge of the two numbers with the smallest digit
removed.

def merge(n1, n2):
""" Merges two numbers by digit in decreasing order
>>> merge(31, 42)
4321
>>> merge(21, 0)
21
>>> merge (21, 31)
3211
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Recursion
	Q1: Warm Up: Recursive Multiplication
	Q2: Recursion Environment Diagram
	Q3: Find the Bug
	Q4: Is Prime
	Q5: Recursive Hailstone
	Q6: Merge Numbers

