
CS 61A Trees, Data Abstraction, Sequences
Fall 2021 Discussion 5: September 29, 2021

Data Abstraction
Data abstraction is a powerful concept in computer science that allows program-
mers to treat code as objects. For example, using code to represent cars, chairs,
people, and so on. That way, programmers don’t have to worry about how code is
implemented; they just have to know what it does.

Data abstraction mimics how we think about the world. If you want to drive a car,
you don’t need to know how the engine was built or what kind of material the tires
are made of to do so. You just have to know how to use the car for driving itself,
such as how to turn the wheel or press the gas pedal.

A data abstraction consists of two types of functions:

• Constructors: functions that build the abstract data type.

• Selectors: functions that retrieve information from the data type.

Programmers design data abstractions to abstract away how information is stored
and calculated such that the end user does not need to know how constructors and
selectors are implemented. The nature of abstraction allows whoever uses them to
assume that the functions have been written correctly and work as described.

Trees
One example of data abstraction is with trees.

In computer science, trees are recursive data structures that are widely used in
various settings and can be implemented in many ways. The diagram below is an
example of a tree.

Example Tree

Generally in computer science, you may see trees drawn “upside-down” like so. We
say the root is the node where the tree begins to branch out at the top, and the
leaves are the nodes where the tree ends at the bottom.

2 Trees, Data Abstraction, Sequences

Some terminology regarding trees:

• Parent Node: A node that has at least one branch.

• Child Node: A node that has a parent. A child node can only have one
parent.

• Root: The top node of the tree. In our example, this is the 1 node.

• Label: The value at a node. In our example, every node’s label is an integer.

• Leaf : A node that has no branches. In our example, the 4, 5, 6, 2 nodes are
leaves.

• Branch: A subtree of the root. Trees have branches, which are trees them-
selves: this is why trees are recursive data structures.

• Depth: How far away a node is from the root. We define this as the number
of edges between the root to the node. As there are no edges between the root
and itself, the root has depth 0. In our example, the 3 node has depth 1 and
the 4 node has depth 2.

• Height: The depth of the lowest (furthest from the root) leaf. In our example,
the 4, 5, and 6 nodes are all the lowest leaves with depth 2. Thus, the entire
tree has height 2.

In computer science, there are many different types of trees, used for different
purposes. Some vary in the number of branches each node has; others vary in the
structure of the tree.

Tree Data Abstraction
A tree has a root value and a list of branches, where each branch is itself a tree.

The data abstraction specifies that calling branches on a tree t will give us a list
of branches. Treating the return value of branches(t) as a list is then part of
how we define trees.

How the entire tree t is implemented is under the abstraction barrier. Rather than
assuming an implementation of label and branches, we will want to use those
selector functions directly.

For example, we could choose to implement the tree data abstraction with a dic-
tionary with separate entries for the label and the branches, or as a list with the
first element being label and the rest being branches.

• The tree constructor takes in a value label for the root, and an optional
list of branches branches. If branches isn’t given, the constructor uses the
empty list [] as the default.

• The label selector returns the value of the root, while the branches selector
returns the list of branches of the tree.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees, Data Abstraction, Sequences 3

With this in mind, we can create the tree from earlier using our constructor:

t = tree(1,
[tree(3,

[tree(4),
tree(5),
tree(6)]),

tree(2)])

Questions
Q1: Tree Abstraction Barrier

Consider a tree t constructed by calling tree(1, [tree(2), tree(4)]). For each
of the following expressions, answer these two questions:

• What does the expression evaluate to?

• Does the expression violate any abstraction barriers? If so, write an equivalent
expression that does not violate abstraction barriers.

1. label(t)

2. t[0]

3. label(branches(t)[0])

4. is_leaf(t[1:][1])

5. [label(b) for b in branches(t)]

6. Challenge: branches(tree(5, [t, tree(3)]))[0][0]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Trees, Data Abstraction, Sequences

Q2: Height

Write a function that returns the height of a tree. Recall that the height of a tree
is the length of the longest path from the root to a leaf.

def height(t):
"""Return the height of a tree.

>>> t = tree(3, [tree(5, [tree(1)]), tree(2)])
>>> height(t)
2
>>> t = tree(3, [tree(1), tree(2, [tree(5, [tree(6)]), tree(1)])
])
>>> height(t)
3
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Q3: Maximum Path Sum

Write a function that takes in a tree and returns the maximum sum of the values
along any path in the tree. Recall that a path is from the tree’s root to any leaf.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees, Data Abstraction, Sequences 5

def max_path_sum(t):
"""Return the maximum path sum of the tree.

>>> t = tree(1, [tree(5, [tree(1), tree(3)]), tree(10)])
>>> max_path_sum(t)
11
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Trees, Data Abstraction, Sequences

Q4: Find Path

Write a function that takes in a tree and a value x and returns a list containing the
nodes along the path required to get from the root of the tree to a node containing
x.

If x is not present in the tree, return None. Assume that the entries of the tree are
unique.

For the following tree, find_path(t, 5) should return [2, 7, 6, 5]

Example Tree

def find_path(t, x):
"""
>>> t = tree(2, [tree(7, [tree(3), tree(6, [tree(5), tree(11)])]
), tree(15)])
>>> find_path(t, 5)
[2, 7, 6, 5]
>>> find_path(t, 10) # returns None
"""
if _____________________________:

return _____________________________
_____________________________:

path = ______________________
if _____________________________:

return _____________________________

Sequences
Sequences are ordered collections of values that support element-selection and have
length. We’ve worked with lists, but other Python types are also sequences, includ-
ing strings.

Q5: Map, Filter, Reduce

Many languages provide map, filter, reduce functions for sequences. Python also
provides these functions (and we’ll formally introduce them later on in the course),

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees, Data Abstraction, Sequences 7

but to help you better understand how they work, you’ll be implementing these
functions in the following problems.

In Python, the map and filter built-ins have slightly different behavior
than the my_map and my_filter functions we are defining here.

my_map takes in a one argument function fn and a sequence seq and returns a list
containing fn applied to each element in seq.

def my_map(fn, seq):
"""Applies fn onto each element in seq and returns a list.
>>> my_map(lambda x: x*x, [1, 2, 3])
[1, 4, 9]
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

my_filter takes in a predicate function pred and a sequence seq and returns a list
containing all elements in seq for which pred returns True.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Trees, Data Abstraction, Sequences

def my_filter(pred, seq):
"""Keeps elements in seq only if they satisfy pred.
>>> my_filter(lambda x: x % 2 == 0, [1, 2, 3, 4]) # new list
has only even-valued elements
[2, 4]
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees, Data Abstraction, Sequences 9

my_reduce takes in a two argument function combiner and a non-empty sequence
seq and combines the elements in seq into one value using combiner.

def my_reduce(combiner, seq):
"""Combines elements in seq using combiner.
seq will have at least one element.
>>> my_reduce(lambda x, y: x + y, [1, 2, 3, 4]) # 1 + 2 + 3 + 4
10
>>> my_reduce(lambda x, y: x * y, [1, 2, 3, 4]) # 1 * 2 * 3 * 4
24
>>> my_reduce(lambda x, y: x * y, [4])
4
>>> my_reduce(lambda x, y: x + 2 * y, [1, 2, 3]) # (1 + 2 * 2) +
2 * 3
11
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Q6: Count palindromes

Write a function that counts the number of palindromes (any word that reads the
same forwards as it does when read backwards) in a list of words using only lambda
, string operations, conditional expressions, and the functions we defined above
(my_filter, my_map, my_reduce). Specifically, do not use recursion or any kind of
loop.

def count_palindromes(L):
"""The number of palindromic words in the sequence of strings
L (ignoring case).

>>> count_palindromes(("Acme", "Madam", "Pivot", "Pip"))
2
"""
return ______

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Trees, Data Abstraction, Sequences

Hint: The easiest way to get the reversed version of a string s is to use the Python
slicing notation trick s[::-1]. Also, the function lower, when called on strings,
converts all of the characters in the string to lowercase. For instance, if the variable
s contains the string “PyThoN”, the expression s.lower() evaluates to “python”.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees, Data Abstraction, Sequences 11

Additional Practice
Q7: Perfectly Balanced

Part A: Implement sum_tree, which returns the sum of all the labels in tree t.

Part B: Implement balanced, which returns whether every branch of t has the
same total sum and that the branches themselves are also balanced.

Challenge: Solve both of these parts with just 1 line of code each.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Trees, Data Abstraction, Sequences

def sum_tree(t):
"""
Add all elements in a tree.
>>> t = tree(4, [tree(2, [tree(3)]), tree(6)])
>>> sum_tree(t)
15
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want
def balanced(t):

"""
Checks if each branch has same sum of all elements and
if each branch is balanced.
>>> t = tree(1, [tree(3), tree(1, [tree(2)]), tree(1, [tree(1),
tree(1)])])
>>> balanced(t)
True
>>> t = tree(1, [t, tree(1)])
>>> balanced(t)
False
>>> t = tree(1, [tree(4), tree(1, [tree(2), tree(1)]), tree(1, [
tree(3)])])
>>> balanced(t)
False
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Trees, Data Abstraction, Sequences 13

Q8: Hailstone Tree

We can represent the hailstone sequence as a tree in the figure below, showing the
route different numbers take to reach 1. Remember that a hailstone sequence starts
with a number n, continuing to n/2 if n is even or 3n+1 if n is odd, ending with
1. Write a function hailstone_tree(n, h) which generates a tree of height h,
containing hailstone numbers that will reach n.

Hint: A node of a hailstone tree will always have at least one, and
at most two branches (which are also hailstone trees). Under what
conditions do you add the second branch?

def hailstone_tree(n, h):
"""Generates a tree of hailstone numbers that will reach N, with
height H.
>>> print_tree(hailstone_tree(1, 0))
1
>>> print_tree(hailstone_tree(1, 4))
1

2
4

8
16

>>> print_tree(hailstone_tree(8, 3))
8

16
32

64
5

10
"""
if _________________________________:

return _________________________________
branches = _________________________________
if ___________ and ___________ and ___________:

branches += _________________________________
return tree(n, branches)

def print_tree(t):
def helper(i, t):

print(" " * i + str(label(t)))
for b in branches(t):

helper(i + 1, b)
helper(0, t)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Data Abstraction
	Trees
	Tree Data Abstraction
	Questions
	Q1: Tree Abstraction Barrier
	Q2: Height
	Q3: Maximum Path Sum
	Q4: Find Path

	Sequences
	Q5: Map, Filter, Reduce
	Q6: Count palindromes

	Additional Practice
	Q7: Perfectly Balanced
	Q8: Hailstone Tree

