
CS 61A Object-Oriented Programming, String
Representation
Fall 2021 Discussion 7: October 13, 2021

OOP
Object-oriented programming (OOP) is a programming paradigm that allows
us to treat data as objects, like we do in real life.

For example, consider the class Student. Each of you as individuals is an instance
of this class.

Details that all CS 61A students have, such as name, are called instance variables.
Every student has these variables, but their values differ from student to student. A
variable that is shared among all instances of Student is known as a class variable.
For example, the max_slip_days attribute is a class variable as it is a property of
all students.

All students are able to do homework, attend lecture, and go to office hours. When
functions belong to a specific object, they are called methods. In this case, these
actions would be methods of Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance variable: a data attribute of an object, specific to an instance

• class variable: a data attribute of an object, shared by all instances of a
class

• method: a bound function that may be called on all instances of a class

Instance variables, class variables, and methods are all considered attributes of an
object.

2 Object-Oriented Programming, String Representation

Q1: WWPD: Student OOP

Below we have defined the classes Professor and Student, implementing some
of what was described above. Remember that Python passes the self argument
implicitly to methods when calling the method directly on an object.

class Student:

max_slip_days = 3 # this is a class variable

def __init__(self, name, staff):
self.name = name # this is an instance variable
self.understanding = 0
staff.add_student(self)
print("Added", self.name)

def visit_office_hours(self, staff):
staff.assist(self)
print("Thanks, " + staff.name)

class Professor:

def __init__(self, name):
self.name = name
self.students = {}

def add_student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

def grant_more_slip_days(self, student, days):
student.max_slip_days = days

What will the following lines output?

>>> callahan = Professor("Callahan")
>>> elle = Student("Elle", callahan)

>>> elle.visit_office_hours(callahan)

>>> elle.visit_office_hours(Professor("Paulette"))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming, String Representation 3

>>> elle.understanding

>>> [name for name in callahan.students]

>>> x = Student("Vivian", Professor("Stromwell")).name

>>> x

>>> [name for name in callahan.students]

>>> elle.max_slip_days

>>> callahan.grant_more_slip_days(elle, 7)
>>> elle.max_slip_days

>>> Student.max_slip_days

Q2: Keyboard

We’d like to create a Keyboard class that takes in an arbitrary number of Buttons
and stores these Buttons in a dictionary. The keys in the dictionary will be ints
that represent the postition on the Keyboard, and the values will be the respective
Button. Fill out the methods in the Keyboard class according to each description,
using the doctests as a reference for the behavior of a Keyboard.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Object-Oriented Programming, String Representation

class Button:
def __init__(self, pos, key):

self.pos = pos
self.key = key
self.times_pressed = 0

class Keyboard:
"""A Keyboard takes in an arbitrary amount of buttons, and has a
dictionary of positions as keys, and values as Buttons.
>>> b1 = Button(0, "H")
>>> b2 = Button(1, "I")
>>> k = Keyboard(b1, b2)
>>> k.buttons[0].key
'H'
>>> k.press(1)
'I'
>>> k.press(2) # No button at this position
''
>>> k.typing([0, 1])
'HI'
>>> k.typing([1, 0])
'IH'
>>> b1.times_pressed
2
>>> b2.times_pressed
3
"""
def __init__(self, *args):

for _________ in ________________:

def press(self, info):
"""Takes in a position of the button pressed, and
returns that button's output."""
if ____________________:

def typing(self, typing_input):
"""Takes in a list of positions of buttons pressed, and
returns the total output."""

for ________ in ____________________:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming, String Representation 5

Inheritance
To avoid redefining attributes and methods for similar classes, we can write a single
base class from which the similar classes inherit. For example, we can write a
class called Pet and define Dog as a subclass of Pet:

class Pet:

def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):

def talk(self):
super().talk()
print('This Dog says woof!')

Inheritance represents a hierarchical relationship between two or more classes where
one class is a more specific version of the other: a dog is a pet (We use is a to
describe this sort of relationship in OOP languages, and not to refer to the Python
is operator).

Since Dog inherits from Pet, the Dog class will also inherit the Pet class’s methods,
so we don’t have to redefine __init__ or eat. We do want each Dog to talk in a
Dog-specific way, so we can override the talk method.

We can use super() to refer to the superclass of self, and access any superclass
methods as if we were an instance of the superclass. For example, super().talk()
in the Dog class will call the talk() method from the Pet class, but passing the
Dog instance as the self.

This is a little bit of a simplification, and if you’re interested you can read more in
the Python documentation on super.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://docs.python.org/3/library/functions.html#super

6 Object-Oriented Programming, String Representation

Q3: Cat

Below is a skeleton for the Cat class, which inherits from the Pet class. To com-
plete the implementation, override the __init__ and talk methods and add a new
lose_life method.

Hint: You can call the __init__ method of Pet (the superclass of Cat)
to set a cat’s name and owner.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming, String Representation 7

class Cat(Pet):

def __init__(self, name, owner, lives=9):
"*** YOUR CODE HERE ***"

def talk(self):
"""Print out a cat's greeting.

>>> Cat('Thomas', 'Tammy').talk()
Thomas says meow!
"""
"*** YOUR CODE HERE ***"

def lose_life(self):
"""Decrements a cat's life by 1. When lives reaches zero,
is_alive becomes False. If this is called after lives has
reached zero, print 'This cat has no more lives to lose.'
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Object-Oriented Programming, String Representation

Q4: NoisyCat

More cats! Fill in this implementation of a class called NoisyCat, which is just like
a normal Cat. However, NoisyCat talks a lot – twice as much as a regular Cat! If
you’d like to test your code, feel free to copy over your solution to the Cat class
above.

class __________ # Fill me in!
"""A Cat that repeats things twice."""
def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?
"*** YOUR CODE HERE ***"

def talk(self):
"""Talks twice as much as a regular cat.
>>> NoisyCat('Magic', 'James').talk()
Magic says meow!
Magic says meow!
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Class Methods
Now we’ll try out another feature of Python classes: class methods. A method can
be turned into a class method by adding the classmethod decorator. Then, instead
of receiving the instance as the first argument (self), the method will receive the
class itself (cls).

Class methods are commonly used to create “factory methods”: methods whose job
is to construct and return a new instance of the class.

For example, we can add a robo_factory class method to our Dog class that makes
robo-dogs:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://docs.python.org/3/library/functions.html#classmethod

Object-Oriented Programming, String Representation 9

class Dog(Pet):
With the previously defined methods not written out
@classmethod
def robo_factory(cls, owner):

return cls("RoboDog", owner)

Then a call to Dog.robo_factory('Sally') would return a new Dog instance with
the name “RoboDog” and owner “Sally”.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Object-Oriented Programming, String Representation

Q5: Cat Adoption

Now you can implement the adopt_random_cat method below, which should con-
struct a cat with a random name and lives. To generate random values, you can
use functions like random.choice and random.randint from the random module.

import random as random

class Cat(Pet):
def __init__(self, name, owner, lives=9):

"*** YOUR CODE HERE ***"

Insert other previously defined methods here

@classmethod
def adopt_random_cat(cls, owner):

"""
Returns a new instance of a Cat with the given owner,
a randomly chosen name and a random number of lives.
>>> randcat = Cat.adopt_random_cat("Ifeoma")
>>> isinstance(randcat, Cat)
True
>>> randcat.owner
'Ifeoma'
"""

return cls(____, ____, ____)

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://docs.python.org/3/library/random.html#random.choice
https://docs.python.org/3/library/random.html#random.randint
https://docs.python.org/3/library/random.html

Object-Oriented Programming, String Representation 11

Representation: Repr, Str
There are two main ways to produce the “string” of an object in Python: str()
and repr(). While the two are similar, they are used for different purposes.

str() is used to describe the object to the end user in a “Human-readable” form,
while repr() can be thought of as a “Computer-readable” form mainly used for
debugging and development.

When we define a class in Python, __str__ and __repr__ are both built-in methods
for the class.

We can call those methods using the global built-in functions str(obj) or repr(
obj) instead of dot notation, obj.__repr__() or obj.__str__().

In addition, the print() function calls the __str__ method of the object, while
simply calling the object in interactive mode calls the _repr__ method.

Here’s an example:

class Rational:

def __init__(self, numerator, denominator):
self.numerator = numerator
self.denominator = denominator

def __str__(self):
return f'{self.numerator}/{self.denominator}'

def __repr__(self):
return f'Rational({self.numerator},{self.denominator})'

>>> a = Rational(1, 2)
>>> str(a)
'1/2'
>>> repr(a)
'Rational(1,2)'
>>> print(a)
1/2
>>> a
Rational(1,2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Object-Oriented Programming, String Representation

Q6: WWPD: Repr-esentation

class A:
def __init__(self, x):

self.x = x

def __repr__(self):
return self.x

def __str__(self):
return self.x * 2

class B:
def __init__(self):

print('boo!')
self.a = []

def add_a(self, a):
self.a.append(a)

def __repr__(self):
print(len(self.a))
ret = ''
for a in self.a:

ret += str(a)
return ret

Given the above class definitions, what will the following lines output?

>>> A('one')

>>> print(A('one'))

>>> repr(A('two'))

>>> b = B()

>>> b.add_a(A('a'))
>>> b.add_a(A('b'))
>>> b

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	OOP
	Q1: WWPD: Student OOP
	Q2: Keyboard

	Inheritance
	Q3: Cat
	Q4: NoisyCat

	Class Methods
	Q5: Cat Adoption

	Representation: Repr, Str
	Q6: WWPD: Repr-esentation

